Low voltage high bandwidth quad SPDT switch

Features

- Ultra low power dissipation:
- $\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$

■ Low "ON" resistance:
$-R_{\mathrm{ON}}=4.6 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=5.8 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

- Wide operating voltage range:
- V_{CC} (opr) $=1.65 \mathrm{~V}$ to 4.3 V single supply

■ 4.3 V tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.0 V

- Typical bandwidth $(-3 \mathrm{~dB})$ at 800 MHz on all channels
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD performance exceeds JESD22
- 2000-V human body model (A114-A)

■ USB (2.0) high-speed (480 Mbps) signal switching compliant

Description

The STG3692 is a high-speed CMOS low voltage quad analog S.P.D.T. (single pole dual throw) switch or 2:1 multiplexer/demultiplexer switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.

The nSEL inputs are provided to control the switch. The switch S1 is ON (connected to common ports Dn) when the nSEL input is held high and OFF (high impedance state exists between the two ports) when SEL is held low; the switch S2 is ON (it is connected to common port D) when the nSEL input is held low and OFF (high impedance state exists between the two ports) when nSEL is held high.

Additional key features are fast switching speed, break-before-make delay time and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing
STG3692QTR	QFN16L $(2.6 \times 1.8 \mathrm{~mm})$	Tape and reel

Contents

1 Pin settings 3
1.1 Pin connection 3
1.2 Pin description 3
2 Device summary 4
3 Maximum rating 5
3.1 Recommended operating conditions 5
4 Electrical characteristics 6
5 Test circuits 10
6 Package mechanical data 13
7 Revision history 16

1 Pin settings

1.1 Pin connection

Figure 1. Pin connection (top through view)

1.2 Pin description

Table 2. Pin description

Pin number	Symbol	Name and function
15,1,	1 S1, 1S2,	
4,6,	2 S1, 2S2,	Independent channels
7,9,	$3 S 1,3 S 2$,	
12,14	$4 \mathrm{~S} 1,4 \mathrm{~S} 2$	Common channels
$16,5,8,13$	D1, D2, D3, D4	Control
3,10	$1-2 S E L$,	Positive supply voltage
2	$3-4 \mathrm{SEL}$	V_{CC}

Note: \quad Exposed pad must be soldered to a floating plane. Do NOT connect to power or ground.

2 Device summary

Figure 2. Input equivalent circuit

Table 3. Truth table

SEL	Switch S1	Switch S2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance.

3 Maximum rating

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {IC }}$	DC control input voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IKC }}$	DC input diode current on control pin $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC input diode current $\left(\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC output diode current	± 20	mA
I_{O}	DC output current	± 128	mA
I_{OP}	DC output current peak (pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle)	± 300	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	$\mathrm{DC} \mathrm{V}_{\mathrm{CC}}$ or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}{ }^{(1)}$	1120	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature $(10$ sec $)$	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$.

3.1 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	1.65 to 4.3	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
T_{op}	Operating temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0 to 20
	V	$\mathrm{~V} / \mathrm{V}$	

1. Truth table guaranteed: 1.2 V to 4.3 V .

4 Electrical characteristics

Table 6. DC specifications

Symbol	Parameter	V_{cc} (V)	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
V_{IH}	High level input voltage	1.65-1.95		$0.65 \mathrm{~V}_{\text {cc }}$	-	-	$0.65 \mathrm{~V}_{\text {CC }}$	-	V
		2.3-2.5		1.2	-	-	1.2	-	
		2.7-3.0		1.3	-	-	1.3	-	
		3.3-3.6		1.4	-	-	1.4	-	
		4.3		1.6	-	-	1.6	-	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95		-	-	0.25	-	-	V
		2.3-2.5		-	-	0.25	-	-	
		2.7-3.0		-	-	0.25	-	-	
		3.3-3.6		-	-	0.30	-	-	
		4.3		-	-	0.40	-	-	
$\mathrm{R}_{\text {PEAK }}$	Switch ON peak resistance	1.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$	-	12.0	16.0	-	-	Ω
		2.7		-	6.3	8.0	-	-	
		3.0		-	5.8	7.5	-	-	
		3.7		-	5.0	6.5	-	-	
		4.3		-	4.6	6.0	-	-	
R_{ON}	Switch On resistance	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$	-	4.0	5.2	-	-	Ω
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0.8 \\ & \mathrm{~V} \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$	-	5.0	6.5	-	-	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance match between channels ${ }^{(1)}$	1.8	V_{S} at R_{ON} max $I_{S}=8 \mathrm{~mA}$	-	-	-	-	-	Ω
		2.7		-	-	-	-	-	
		3.0		-	0.3	-	-	-	
		3.7		-	-	-	-	-	
		4.3		-	-	-	-	-	
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} \end{aligned}$	-	6.6	-	-	-	Ω
		2.7		-	2.0	-	-	-	
		3.0		-	1.7	-	-	-	
		3.7		-	1.5	-	-	-	
		4.3		-	1.6	-	-	-	
IOFF	OFF state leakage current (SN), (D)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V	-	-	± 20	-	± 100	nA

Table 6. DC specifications (continued)

Symbol	Parameter	$\begin{aligned} & V_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
I_{N}	Input leakage current	0 to 4.3	$\mathrm{V}_{\text {SEL }}=0$ to 4.3 V	-	-	± 0.1	-	± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent supply current	1.65 to 4.3	$\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {CC }}$ or GND	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cclv }}$	Quiescent supply current low voltage driving	4.3	$\begin{aligned} & \mathrm{V}_{1-2 \mathrm{SEL}} \\ & \mathrm{~V}_{3-4 \mathrm{SEL}}=1.65 \mathrm{~V} \end{aligned}$	-	± 37	± 50	-	± 100	$\mu \mathrm{A}$
			$\begin{aligned} & \hline \mathrm{V}_{1-2 \mathrm{SEL},} \\ & \mathrm{~V}_{3-4 \mathrm{SEL}}=1.80 \mathrm{~V} \end{aligned}$	-	± 33	± 40	-	± 50	
			$\begin{aligned} & \mathrm{V}_{1-2 \mathrm{SEL},} \\ & \mathrm{~V}_{3-4 \mathrm{SEL}}=2.60 \mathrm{~V} \end{aligned}$	-	± 11	± 20	-	± 30	

1. Note 1: Δ Ron $=\max \operatorname{ImSN}-n S N I$, where $m=1 . .4$ and $n=1 . .4, N=1 . .2$
2. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 7. AC electrical characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	V_{cc} (V)	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation delay	1.65-1.95		-	0.30	-	-	-	ns
		2.3-2.7		-	0.30	-	-	-	
		3.0-3.3		-	0.25	-	-	-	
		3.6-4.3		-	0.25	-	-	-	
${ }_{\text {ton }}$	Turn-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$	-	31	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	20	26	-	34	
		3.0-3.3		-	15	20	-	26	
		3.6-4.3		-	12	15	-	20	
$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \text { Turn-OFF } \\ & \text { time } \end{aligned}$	1.65-1.95	$\mathrm{V}_{S}=0.8$	-	22	-	-	-	ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$	-	14	18	-	23	
		3.0-3.3		-	11	14	-	18	
		3.6-4.3		-	10	13	-	17	
${ }_{\text {D }}$	Break-before-make time delay	1.65-1.95	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =35 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =50 \Omega \\ \mathrm{~V}_{\mathrm{S}} & =1.5 \mathrm{~V} \end{aligned}$	1	7	-	-	-	ns
		$2.3-2.7$		1	5	-	-	-	
		3.0-3.3		1	4	-	-	-	
		3.6-4.3		1	3	-	-	-	

Table 7. $A C$ electrical characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$ (continued)

Symbol	Parameter	$V_{c c}$ (V)	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
Q	Charge injection	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	-	2.8	-	-	-	pC
		2.3		-	3.5	-	-	-	
		3.0		-	3.8	-	-	-	
		4.3		-	5.0	-	-	-	

Table 8. Analog switch characteristics ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test conditions		Value					Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{O}_{\text {IRR }}$	OFF isolation ${ }^{(1)}$	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\text {RMS, }} \mathrm{f}=1 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	-	-79	-	-	-	dB
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=10 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	-	-60	-	-	-	
$\mathrm{X}_{\text {talk }}$	Crosstalk	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=1 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	-	-78	-	-	-	dB
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=10 \mathrm{MHz} \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	-	-61	-	-	-	
B_{w}	-3dB bandwidth	3.0-4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	-	800	-	-	-	MHz
D_{G}	Differential gain	3.0-4.3	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-	0.64	-	-	-	\%
D_{P}	Differential phase	3.0-4.3	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-	0.1	-	-	-	deg
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	6.2	-	-	-	
$\mathrm{Con}_{\mathrm{ON}}$	Sn port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$	-	12	-	-	-	pF
$\mathrm{C}_{\text {OFF }}$	Sn port capacitance when switch is disabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$	-	5	-	-	-	

1. Off isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output. $\mathrm{V}_{\mathrm{S}}=$ input to off switch.

Table 9. USB related AC electrical characteristics

Symbol	Parameter	V_{Cc} (V)	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {SK(0) }}$	Channel-to-channel skew	3.0 to 3.6	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	-	26	-	-	-	ps
$\mathrm{t}_{\text {SK(P) }}$	Skew of opposite transition of the same output	3.0 to 3.6	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	-	60	-	-	-	ps
T_{J}	Total jitter	3.0 to 3.6	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=750 \mathrm{ps} \\ \text { at } 480 \mathrm{Mbps} \end{gathered}$	-	130	-	-	-	ps

5 Test circuits

Figure 3. ON-resistance

Figure 5. OFF leakage

Figure 4. Bandwidth

Figure 6. Channel to channel crosstalk

Figure 7. OFF isolation

Figure 8. Test circuit

Note: $1 C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance)
$2 R_{L}=50 \Omega$ or equivalent
$3 \quad R_{T}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection
$\left(\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

Figure 11. Turn ON, turn OFF delay time

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 12. Package outline for QFN16L ($2.6 \times 1.8 \mathrm{~mm}$)

Table 10. QFN16L ($2.6 \times 1.8 \mathrm{~mm}$) mechanical data

Symbol	Millimeters		
	Min	Typ	Max
A	0.45	0.50	0.55
A1	0	0.02	0.05
A3		0.127	
b	0.15	0.20	0.25
D	2.50	2.60	2.70
D2	1.40	1.50	1.60
E	1.70	1.80	1.90
E2	0.60	0.70	0.80
e		0.40	
L	0.25	0.30	0.35

Note: 1 VFQFPN - Standard for thermally enhanced vey fine pitch quad flat package no leads.
2 The leads size is comprehensive of the thickness of the leads finishing material.
3 Dimensions do not include mold protusion.
4 Package outline exclusive of metal burrs dimensions.
5 Shipping media tape and reel units: 3000
Figure 13. Footprint recommendation

Figure 14. QFN16L ($2.6 \times 1.8 \mathrm{~mm}$) tape \& reel

7 Revision history

Table 11. Document revision history

Date	Revision	Changes
11-Oct-2006	1	Initial release.
08-Nov-2006	2	Added feature in cover page.
08-Jan-2007	3	Mechanical data updated.
03-Jul-2007	4	$C_{\text {ON }}$ and C CofF values updated on Table 8 on page 8.
05-May-2010	5	Document reformatted no content change.
30-Jun-2010	6	Update of product maturity.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

